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Differential calculus and gauge theory on finite sets" 
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t Department of Mathematics, University of Crete, GR-71409 Iraklion, Greece 
% lnstitut fiir Theoretische Physik, Bunsensrrasse 9. 0.37073 Gmingen, Germany 

Received 9 August 1993 

Abstract. We develop differentid calculus and gauge theory on a finite set G. An elegant 
formulation is obtained when G is supplied with a gmup structure and in panicular for a cyclic 
group. Connes' two-point model (which is an essential ingredient of his reformulation of the 
standard model of elementary particle physics) is recovered in our approach. Reductions of the 
universal differential calculus to 'lower-dimensional' differential calculi are considered. The 
'complete reduction' leads to a differential calculus on a periodic lattice. 

1. Introduction 

Again and again over the years, arguments have been given to assign a more fundamental 
role to discrete spaces rather than to the continuum and attempts were made to develop 
corresponding physical theories (see [l] for some early examples). Such an idea has been 
pursued by Finkelstein since 1968 121 culminating in a forthcoming book. Classical and 
quantum field theory on discrete spaces has been considered, in particular, in [3]. The 
finiteness of the entropy of a black hole (and the corresponding finiteness of the number 
of bits of information that can be stored there) led 't Hooft to speculate about a discrete 
(cellular automaton) structure of spacetime at the Planck scale [4]. Further interesting ideas 
about discreteness of space and time can be found in 15, 61, for example. 

More recently, concepts of differential geometry were extended to discrete spaces (and 
even non-commutative algebras). In the framework of non-commutative geometry, finite 
spaces have been considered to build models of elementary particle physics [7] (see also [8]). 
The present work provides a general approach to the differential geometry of such spaces. 
It has been inspired by recent papers of Sitarz [9] who treated the case of discrete groups 
(see also [IO]). 

We take the point of view that some form of differential calculus is the very basic 
structure necessary to formulate physical models and, in particular, dynamics of fields 
on some space. Our belief in the physical relevance of this mathematical structure is 
partly based on the observation made in [ll, 121 that lattice theories (in particular their 
Lagrangian and action) are obtained from continuum theories in a universal way simply by 
a certain deformation of the ordinary calculus of differential forms. In this case functions 
and differentials satisfy non-trivial commutation relations depending on the lattice spacings 
(for vanishing lattice spacings they commute and one recovers the ordinary differential 
calculus). Another deformation of the ordinary differential calculus was shown to be related 
with stochastic calculus 1131 and 'proper time' formulations [14] of physical theories. 1151. 

* Work supplfed by the Heraeus-Foundation, 
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In section 2 we introduce the universal differential calculus (universal differentid 
envelope [lo, 161) on an arbitrary finite set of N elements. Section 3 shows how to 
formulate gauge theory on a finite set. Of special interest is the case when the set is 
supplied with a group structure. This is the subject of section 4. In section 5, we consider 
the group structure EN in detail. 

In the gauge theory formalism based on the universal differential calculus a connection 
(gauge potential) on a finite set can provide (a set of) Higgs fields [7]. This observation 
stimulated the use of non-commutative geometry for model building in particle physics 
[7, 81. We briefly discuss it for the two-point space in section 5.2. 

The universal differential calculus on a finite set of order N associates with it N - 1 
linearly independent differentials. On the other hand, we know that there are ‘smaller’ 
differential calculi. In particular, it is possible to have the N points ‘on a closed line’, 
i.e. embedded as a lattice in one dimension. This configuration is described by a single 
coordinate y which satisfies the commutation relation 

ydy = q d y y  
with its differential dy where q is an Nth primitive root of unity (see [ll]). There is a 
natural way from the universal differential calculus to this ‘reduced’ differential calculus. 
Related with the fact that one always has the group structure EN on a set of N elements, 
there is a function y such that yN = 1. Expressing the universal differential calculus in 
terms of the functions y“ ,  n = 0,. . . , N - 1, we can consistently add the above relation so 
that the (N - 1)-dimensional universal calculus is reduced to a one-dimensional differential 
calculus. Details are presented in section 6. The reduced differential calculus (and its 
higher-dimensional generalization) gives a convenient universal framework to formulate 
and describe physical models on a (closed) lattice [ll, 121. 

Between the universal differential calculus (which assigns an ( N  - 1)-dimensional 
polyhedron to a set of N points) and the one-dimensional (periodic lattice) calculus there 
are other differential calculi. It is our concern what kind of geometrict structures can be 
associated with them. Section 6 explores some of the possibilities. 

A reduction of the universal differential calculus induces a corresponding reduction of 
structures built on it, like gauge theory. In this way one can approach field theory on finite 
sets. 

Section 7 contains some conclusions. 

2. Differential calculus on a finite set 

Let G be a finite set with N elements and A the algebra of C-valued functions on G with 
the usual pointwise multiplication of functions, 

(ff’)(s) = f(g) f’k) Vf, f‘ E A, g E G. (2.1) 
A is a commutative, associative and unital complex algebra. With each g E G we associate 
a function xs E A such that 

x,(g‘) = 8s,g, Vg‘ E G . (2.2) 

c x s = l  (the unit in A) (2.3) 

The functions xs satisfy the identities 

SG 

t The notion ‘geometric’ here refers to n connection svUctm on the set of points in the sense of p p h s .  We do 
not consider a metric (or distance funcdon) on the point set in this work. 
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x, x,. = 8,. X E  (2.4) 
which will be frequently used in the following. As a consequence of these two identities, 
every function f E A has an expansion 

f = E f W x ,  (2.5) 
E 

which shows that the functions xx span A linearly over C. Furthermore, 

xgf = x s f ( g )  Vf E A .  (2.6) 
The complex conjugate o f f  E A will be denoted as f*. 

.We extend A =: no to a differential algebra via the action of an exterior derivative 
operator d. It maps elements of A into (formal) differentials which span the space Q' of 1- 
forms as an A-bimodule, and furthermore r-forms into (r + 1)-forms, i.e. d : Q' -+ a.+'. 
We require 

d l  = 0 (2.7) 
dZ = 0 (2.8) 
d("') = d o  w'+ (-1)'~dW' (2.9) 

where w and w' are r- and r'-forms, respectively. Q denotes the space @,"=o Q' of all 
forms. 

Now (2.3) implies 

EdX,=O (2.10) 
E 

(2.5) leads to 
(2.11) 

since f(g) are constants, and (2.6) yields 
f = f(g) dxg - d f  xg . (2.12) 

Acting with d on these relations does not lead to further relations. Equation (2.12) has 
the form of commutation relations between differentials and elements of A. It should be 
noticed that these relations are simply a consequence of the Leibniz rule (2.9). 

We will now choose an element e E G once and for all?. Equation (2.10) shows that 
the differentials dx, are linearly dependent. The differentials dx, with g E G \ {e) =: G' 
are linearly independent, however. Instead of CgcG, we will write in the following. 
Then 

(2.13) df = x ' d x s  [fk) - f(4l 
6 

which shows that df = 0 iff f takes the same value at each element of G. 
The x, are real functions, i.e. 

(x,)' = xs . (2.14) 

The complex conjugation on A can be extended to an involution of the differential algebra 

(fi dfz t. . d fd*  = d(f,*) . . f; (2.15) 

t In the use of a group a natural choice will be the unit element. In genenl, however, there will no4 be a 
distinguished choice of e.  

bs V I  
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where fp E A. 

natural choice of an involution on A. It is determined by 

A D i d i s  and F Muller-Hoissen 

If we put an ordering on the elements of G, i.e. go, ..., g N - 1 ,  then there is another 

(xi)’ = XN-L (2.16) 

where xi := x g .  Again, it extends to n(A) via 

(f1 dfz . . . d h Y  2 d(.$). . . d ( c )  f; . (2.17) 

On C, the involution should coincide with complex conjugation. We will find the *- 
involution of importance when we consider reductions of the differential calculus in 
section 6. 

Let us introduce the I-forms 

8.. L J -  - & . x .  I J (2.18) 

for i # j .  It follows that 

ejk xi = ejk 6ki xi ejx = sij e,, j # k (2.19) 

so that the ejr are common eigen-1-forms for all x i .  As a consequence, if we impose the 
condition e jk  = 0 for fixed j and k on the differential calculus, then we do not obtain 
further relations by multiplication with elements of A. We shall return to this observation 
in section 6. The e,, are a basis of the space of 1-forms as a complex vector space. In 
particular, we have 

d f  = C 0 i j  [ f ( g i )  - f(gj)l= [ - g e i j ,  f] (2.20) 
p .  7-1 

for f E A. The two involutions introduced above act on in the following way: 

B!. = -0.. J I  (2.21) 

8:. ‘J = - 0 N - j . N - i .  (2.22) 
V 

The simple relations which the xi and the 8jw satisfy suggest the following construction 
of finite-dimensional matrix representations of the differential calculus. Let Eij  denote the 
( N  x N) matrix with components (Eij)ke = S i k S j e .  The matrices 

with (non-zero) constants Cij, Cij yield a representation of the differential algebra. However, 
only functions and 1-forms are faithfully represented. I f  C; = -Cji, our first involution acts 
by Hermitian conjugation on the matrices. To represent the second involution, an additional 
‘reflection’ of the indices has to be performed. The ‘doubling’ of the matrices in (2.23) is 
necessary for N > 2 to account for the &-grading of the differential algebra. The case 
N = 2 is special in this respect (see also appendices A and B). More general representations 
are given by 

where Cij and C;, are now (M x M)-matrices and lu denotes the (M x M )  unit matrix. 
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3. Gauge fields on a finite set 

Using the differential calculus introduced in the previous section, gauge theory can now be 
formulated on a finite set G .  Section 3.1 deals with the concept of a connection and its field 
strength (curvature). In section 3.2 we consider the covariant derivative of a field which 
transforms according to a representation of the gauge group. If a conjugation is given on 
the space of fields such that it is compatible with the connection, then the connection turns 
out to be anti-Hermitian for a unitary gauge group, in analogy with the continuum case. 

3.1. Connection andfield strength 

Let 

A = &,A,  (3.1) 
E 

be a connection I-form which transforms under a gauge transformation according to the 
familiar rule 

A' = U A U-' - dU U-' (3.2) 
where U is a function on G with values in a matrix group. Inserting (3.1) in (3.2) and using 
(2.12) we find 

dU ( I  + x E A E )  = dxE [ U ( g ) A E  - A i  U ] .  (3.3) 
E 6 

This equation is satisfied whenf 

C X E A , = - I  
E 

Ab = U ( g )  A,  U-' . 
One has to check that (3.4) is gauge-invariant. Indeed, 

(3.4) 

(3.5) 

Because of (2.10) the coefficients A, in (3.1) are not uniquely determined by the left-hand 
side of (3.1). The corresponding freedom is fixed, however, by the condition (3.4). 

Multiplying (3.4) by xE, and using (2.6) yields 

1.q + 1) 0 (3.7) 

so that 

A,(g) = -1 Vg E G 

From (3.2) one finds that 

F = d A  + A  A = dx, A,(g') A,! 
6.S' 

(3.8) 

(3.9) 

RaIISfOnnS according to F H U F U- ' .  

t The last quation may admit other solutions. This will not be discussed further in the present work. Note that 
the 1 appearing in (3.3) and on the right-hand sides of (3.4) and (3.6) has to be understood as 1 times the unit 
matrix of the gauge group. 
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3.2. Covariant derivatives 

Using (3.2) we have 

A D i d i s  and F Muller-Hoissen 

Udx, = dx, U ( g )  - dux,  = dx, U & )  - U A X ,  + A ' x ,  U ( g )  (3.10) 

which shows that 

Dx, := dx, + A x, (3.1 1) 

transforms covariantly, 

D'x, = U Dx, U(g)-' . 
Furthermore, it satisfies 

C D X , = A .  
P 

(3.12) 

(3.13) 

Let us consider a field $ on G as an element of a module V := An. If the gauge group 
acts on it according to $ H U $, then 

D$ := d$ + A @  (3.14) 

has the same transformation property as a consequence of (3.2). Using (2.5) one finds 

D$ = Dxg $&). (3.15) 
E 

From (3.13) and (3.4) one obtains the identity 

Dx, A,  = 0. 
8 

(3.16) 

Furthermore, using the Leibniz rule for d, (2.6), (3.8) and (2.3). one can express D$ as a 
right-form, 

D@ = E' 6, $ dx, (3.17) 
fi 

with 
+ 
0, $ = x,' [ A d d  W) - A , G )  W ) l .  (3.18) 

Let a conjugation be given which maps $ E V to an element $t of the dual module 
V' such that (o$)~ = $to* (or with o' replaced by U*). If U is unitary, i.e. U t  = .!/-I, 
then the assumption 

(Wit = D($? (3.19) 

E' 

implies 

d$t + $t At = (d$ +A$, ) t  = - $ t A  

and therefore 

(3.20) 

A ~ = - A .  (3.21) 



3165 Differential calculus and gauge theory ~ . ~. 

4. Differential calculus and gauge theory on a finite p u p  

Differential geometric structures on Lie groups like Maurer-Cartan forms play an important 
role in the construction of physical models and in particular in the formulation of gauge 
theories as structures on principal fibre bundles. It is therefore of interest that these structures 
can also be formulated on discrete groups (see also 191). 

Since, on a finite set G it is always possible to introduce a group structure, such a 
Structure can be used to rewrite the differential calculus and gauge theory introduced in the 
previous sections in a different and often simpler form. This will be shown in the following 
two subsections. 

4.1. Differential calculus on afinite group 

Let us consider a group structure on a finite set G with group multiplication (g, g') H gg'. 
For the element e E G we choose the unit element of the group. Right and left actions on 
the algebra A of functions on G are then given by 

(RgfIk') := f (g'g) (Lgf)(g')  := f (gg'). (4.1) 

e, := dx,)gx,. =~C dx,. x,~,-, (4.2) 

+e, := dx,,,.,,,, = e, . (4.3) 

One finds that the 1-forms 

8' ,' 
are left-invariant, i.e. 

8' 

The I-forms 0, are, in this sense, analogues of left-invariant Maurer-Cartan forms on a Lie 
group. They satisfy the identity 

as a consequence of (2.10). Furthermore, 

Using (4.2), (2.12), (2.6) and (2.3), one derives the relation 

f e, = e, R,f - 6,,e df . (4.6) 
As a consequence of (4.6) 

d f  = [e,, fi 
which assigns a particular role to e,. Furthermore, we obtain 

E 8 

using (2.5), (4.3, (2.6), (2.3) and (4.4). Acting with d on (4.2) leads to 

(4.7) 

(4.8) 

(4.9) 

which resembles Maurer-Cartan equations. The expression obtained by acting with d on 
(4.8). using (4.9) and (4.8), has to vanish as a consequence of dZ = 0. It vanishes identically, 
however, so that we do not obtain relations between 1-forms. 
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Using (4.2), (2.14), (2.15), (2.9), (2.6) and (2.10), one finds 

(e,)* = . (4.10) 

In case of the *-involution (cf section 2) one obtains 

(0,)' = -0,. (4. I I )  

It is also possible, of course, to introduce right-invariant Maurer-Cartan forms. All the 
above relations for 0, have corresponding counterparts. 

If the number N of elements of C is a prime number, then the only possible group 
structure is ZN [22]. In the general case, each group with N elements must be a subgroup 
of the symmetric (permutation) group SN. For a finite set, the symmetric group is of 
particular interest since it plays the role of the homeomolphism (or diffeomorphism) group of 
topological spaces or manifolds. The symmetric group and its representations are therefore 
expected to be important in an approach towards a theory of gravity on a finite discrete 
spacetime. 

4.2. Gauge fields on a frnite group 

Let us write the connection 1-form A in terms of the 1-forms e,, 
A = 0, Ps. (4.12) 

P 

Then 

A8' = xsrPS-i P, (4.13) 
E 

and the condition (3.4) translates into the much simpler equation 

Pe = -1 (4.14) 

(where the 1 stands for 1 times the unit matrix of the gauge group). Under a gauge 
transformation, 

(4.15) Pi = ( R P U )  Ps U-'. 
Using (4.6) and (3.2), the transformation of the 1-forms 

fiP := 0, + 8P,e A (4.16) 

is found to be given by 

U fig = &, R,U . (4.17) 

They satisfy 

XfiP = A .  (4.18) 
f i  

The field saength of A is 

For the covariant derivative of * we obtain the expression 

D@ = g, [R,* + P,@I. 
P 

(4.20) 
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With the *-involution, using (4.12) and (4.10), the condition (3.21) translates  into^ 
Pi  = R, Pp-> (Vg E G) . (4.21) 

P,' = R p  Pp (Vg E G) . (4.22) 

Using the *-involution instead, we obtain 

Remark, Gauge theory on finite groups has been discussed in previous work by Sitarz [9]. 
His results are not quite in accordance with ours. Moreover, our approach stresses the 
fact that a group structure is just an auxiliary structure which can be used to deal with the 
differential calculus and gauge theory on G ~ i n  a more convenient way. 

5. The case G = Z,V 

In this section we study the differential calculus on a finite set G of N elements with the 
help of the group structure of ZN. This leads to another look at the matrix representation 
of the differential calculus in section 5.1. The example of gauge theory on Z2 is discussed 
in section 5.2 making contact with Connes' two-point space model 171. 

If we describe ZN as the set of numbers IO, 1, . . . , N - 1) with addition modulo N as 
the group structure, then the functions x,, m = 0,. . :, N - 1 defined by 

xm(n) = &,n (5.1) 
correspond to the functions x8 of section 2. Let us introduce a new function 

N-1 
y := q"x,  

n=O 

with q E C a primitiveNth root of unity, i.e. qN = 1. Then 

and, in particular, yN = 1. Note that the last equation describes the N-point set in the 
simplest possible algebraic way. It replaces the set of equations (2.3) and (2.4). 

Like the xnr n = 0,. . . , N - 1, the set of functions yo , .  . . , yN-l also span the algebra 
A of functions on ZN. Using the identity 

(5.3) can be inverted, 
1 N-1 

m=O 
x, = p" y m  . 

A function f on G can be written as 
N-1 

f =CY"fn 
"=O 

where 

(5.5) 

(5.7) 
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The two involutions introduced in section 2 act on y as follows: 

y* = y-1 y + = y .  (5.8) 

We shall now rewrite the differential calculus introduced in section 2 in terms of y" .  
Equation (2.12) implies 

ydy" +dy y" = dy"+'. (n = I , .  . . , N - 2) (5.9) 
(5.10) y dyN-' + dy yN-] = 0. 

The 1-forms 0, introduced in section 4 now take the form 

(5.1 I )  

The right action on A is given by ( R ,  j ) (y)  = j(q"y). Equation (4.6) then implies? 

Ye, =qnenY (g I ,  ..., N - 1) (5.12) 

i.e. for each n # 0 we have the algebra of a 'quantum plane' [17, 181. The well known 
finite-dimensional representations of the quantum plane (for q a root of unity) lead us again 
to matrix representations of the differential calculus (see section 5.1). 

Using (5.6), the differential of a function j is given by 

(5.13) 

It may appear strange that the differentials dy, dy2, . . . are linearly independent although yk 
depends algebraically on y. Indeed, we shall see in section 6.1 that an additional condition 
can be imposed on the universal differential calculus which 'corrects' this affair. 

5.1. On matrix representations ojthe differential calculus 

The finite-dimensional representations of the 'quantum plane' algebra subject to the relation 

a b = q b a  (5.14) 

(where q is an Nth primitive root of unity) are given up to equivalence by the (N x N) 
matrices 

a =  [ 0 ._, 0 ) ' b =  [ 0 . .  .o . 1:' . . .  0 0 1 
which are known to generate the whole algebra MN(C) of complex (N x N)-matrices [19] 
(see also [ZOJ). They satisfy 

a N = l = b N  (5.16) 

t Acting with d on a relation like (5.12) one should expect to obtain additional relations (commutation relations 
for I-forms). This is not so in our case. The relations (5.12) are simply consequences of the general setting of 
differential calculus as given by (2.7H2.9). 

0 0 0 ... 0 1 
1 0 ... 0 1 0 0 ... 0 0 

(5.15) 

0 0 ... q N - l  0 0 ... 1 0 0 
0 0 ... 0 1 0 



Differential calculus and gauge theory 3169 

where 1 denotes the ( N  x N )  unit matrix. In terms of a and b we can now represent the 
differential calculus by 

and 

(5.17) 

(5.18) 

where and cLC are complex numbers. 

b'; = -ON-k,  then leads to the condition 
The *-involution acts on matrices by Hermitian conjugation. Equation (4.10). i.e. 

(5.19) k e  I ciC = -4 C N - k . N - t  

for the constants in (5.18). 
The Anvolution acts on a matrix B such that E* = P B* P where the matrix P has 

entries Pij = b i . ~ - j .  Then a* = a as required by (5.8) and also 6' = b. From 6'; = - 6 ~  
we now get the condition 

CZe = -qke Cke (5.20) 

(where * denotes complex conjugation). 
More general matrix representations of the differential calculus are given by 

(5.21) 

where the c k t  and cLe are now (Id x M )  matrices. In this case * in (5.19) and (5.20) has 
to be understood as Hermitian conjugation. 

5.2. Gauge theory on Zz 

The simplest non-trivial example of a discrete space is a two-point space, of course. This 
can be endowed with the group structure of Zz. In this case we have q =~-l, y2 = 1 and 

y d y = - d y y .  (5.22) 

The two involutions introduced in section 2 coincide in the case under consideration. The 
field strength of an anti-Hermitian connection A takes the form 

F = ~ , ~ ~ [ ( R ~ P ~ ~ P ~ - I I = ( ~ ~ ) * ~ P ~ P ~  -11 (5.23) 

where (4.14) and (4.21) have been used. The 2-form (61)' = -$(dy)* commutes with all 
f E A. As a consequence, the transformation law F' = UFU-' is shared by the coefficient 
function of F. We can therefore build a gauge-invariant Lagrangian, 

L. := Tr(FtF) = (81)~Tr[P:p, - 11' (5.24) 

where TI denotes the ordinary matrix trace. In order to construct an action, we need a kind 
of integral, a trace tr acting on forms. Such an integral should only have non-zero values 
on forms which commute with all functions f E A. Using the properties which h has in a 
representation (see appendix A) one finds 

(5.25) S := t d  = tr(6:) 2Tr[QtQ - 1]* 
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where we have set Q := Pl(0) and used Pl(1) = Qt which follows from (4.21). The 
constant tr(8;') plays the role of a coupling constant. Equation (5.25) shows that the 
Yang-Mills action on a two-point space is nothing but the usual Higgs potential. a crucial 
observation made in [7]. It becomes a field on a manifold M when the formalism is 
extended to M x Zz (see also 1231). 

A Dimakis and F Muller-Hoissen 

6. Reductions of the universal differential calculus 

So far we have dealt with the 'universal' differential calculus on A, i.e. we have only 
used the general rules (2.7)-(2.9) of differential calculus. There is some freedom to impose 
additional conditions which are consistent with the universal differential calculus. 

When the differential calculus is formulated in terms of the cyclic function y introduced 
in  section 5 ,  there is a natural choice for such a condition in the form of a commutation 
relation between y and its differential. This is elaborated in section 6.1 and generalized in 
section 6.2. 

Section 6.3 contains a general 'discussion of reductions of the universal differential 
calculus which in particular shows that additional relations can be imposed on the differential 
calculus without changing its dimensionality (i.e. the number of linearly-independent 
differentials). 

6.1. From the universal differential calculus to a calculus on n lattice 

The relation 

Y dY =qdY Y .  (6.1) 
leads to a consistent differential calculus on the algebra generated by y [21]. For N > 2 
this condition is not consistent with the *-involution (for which y* = y-I). It is consistent, 
however, if we choose the *-involution for which y' = y. From (6.1) we deduce 

1 -94" 

1 - 9  
In], := - . (6.3) 

In particular, 

dy - - [  NI4 dyyN-' =-O (6.4) 

(since q N  = 1) in accordance with y N  = 1. This suffices to conclude that (6.1) gives 
a consistent reduction of our universal differential calculus, Equation (5.9) is indeed 
identically satisfied. 

The differential of a function f is now given by 

which involves the so-called q derivative, and the 1-form 80 takes the form? 
1 

e, = - dY Y-' 
1-9 
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t 

J Figure 1. The geometric structure induced on the N = 3 point set by 
the universal differential dculus.  

Applying d to (6.1) leads to (dy)* = 0. 

Remark For the ordinary differential calculus where y dy = dy y we have dyN = N yN-]dy 
which is not consistent with yN = 1 unless dy = 0. Commutative algebras are therefore 
not in general compatible with the ordinary differential calculus. 

In 111, 121 we have considered a certain deformation of the ordinary differential calculus 
on a manifold. In one dimension, the deformation can be expressed in the form 

[X, dX] = dX a (6.7) 

where X is a coordinate function on Iw and a is a positive real constant. An action for a 
(classical) field theory can be formulated in terms of the deformed differential calculus and 
turns out to describe a corresponding lattice theory where a plays the role of the lattice 
spacing. In t e m  of the new coordinate y = 4”‘ with q E C, q # 1, the commutation 
relation (6.7) is transformed into (6.1) (see [ l l ]  for details). If q is an Nth root of unity, 
we are considering a closed (periodic) lattice of N points instead of a lattice on the real 
line. 

A differential calculus with M linearly independent differentials on a set G of order N 
should be thought of as associating M dimensions with it. In the case of the universal 
differential calculus, the differential df of a function f on G involves-as ‘partial 
derivatives’-the differences of the values of f at pairs of points according to (2.13)t. In 
this sense this differential calculus gives the structure of an (N - 1)dimensional polyhedron 
in N dimensions to the set G (where the N points of G appear as the vertices). 

One also arrives at such a picture in the following way. Let x, be coordinate functions 
on IwN. We may then consider the equations (2.3) and (2.4) as algebraic equations imposed 
on the functions x,. Their solutions determine a set of N points in W N  which form the 
vertices of an (N - 1)-dimensional polyhedron (see figure 1). 

It is hard to see how one should formulate and understand the reduction of the differential 
calculus in terms of the ‘coordinates’ x, (cf section 6.3, however). The reformulation in 
terms of the single function y makes it easy to formulate a constraint, i.e.. (6.1), which 
reduces the N - 1 dimensions of the universal differential calculus to a single one. The 
corresponding geometric picture (based on (6.5)) is obtained by drawing the set of Nth 
roots of unity in the (complex) plane (see figure 2). 

t If we consider the differential calculus with (6.1) on the algebra of functions on 2 where y is not a rmt of 
unity, the I-form on the right-hand si& plays a special role as a measure for integrating functions of y. ~ The 
corresponding integral sums the values of the function on a q-lattice (cf I l l ,  equation (420)l). 
t (2.13) actually only involves the differences f (g) - f (e) which suggests only drawing lines From e Lo the other 
points of the set. Note, however, that the choice of e is arbitraiy. 
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t 

Figure 1. The N = 8 point set as a onedimensional closed lattice embedded in the 
two-dimensional plane (the structure given to it by the onedimensional differential 
calculus). 

6.2. G = ZN, x . . . x EN, reductions 

In section 5 we considered the group structure ZN on a set of N elements. The 
formulae given there are easily generalized, using multi-index notation, to a group structure 
G = ZN, x . . . x EN, where N = NI . . . N,. Let E G and 

k=l 

(qk  primitive roots). Then 
yE dy!! + dy" yE = dy=+C , 

Generalizing the differential calculus reduction scheme of section 6.1, we impose the 
commutation relations 

(6.11) 6 
Yk dye = 4; dyc Y t  . 

As a consequence, we have 

(6.12) 

where $ E G has components eke = &e. Furthermore, 

y"dyl. = c [n&, qF dyk yE+"-% . (6.13) 

Equation (6.11) has to be compatible with (6.10). Using the last two equations in (&lo), 
we obtain 

k=l 

0 = 2 ( [ n d ,  qmk + [mal, - [mx + n&) dyk (6.14) 

which is identically satisfied since the expression in round brackets on the right-hand side 
vanishes identically. This shows that (6.11) indeed defines a consistent reduction of the 
universal differential calculus. 

The geometric structure which the reduced differential calculus places on the N-point 
set is a 'discrete torus'. It is a Cartesian product of 'discrete circles' like the one shown in 
figure 2. 

Example: Z? x Z3 
The constraints 

k-1 

U2 = 1 v 3 = 1  (6.15) 



Differential calculus and gauge theory 3173 

imposed on the two coordinates U, U on R2 determine a set of six points. In terms of U 
and U, the universal differential calculus on the six-point space is given by the following 
set of rules: 

udu + du u = 0 

u du + du u = d(uv) 

U d(uu) + du uu = du ud(uu)+duuu =d(uu2) (6.16) 
U d(u2) + du U' = d(uu2) 

ud(Uu2) + du UU' = d(u2) 

udu + du U = d(uu) 

udu + d u  U = d(u2) 

ud(u2) +duu2 = 0 
U d(Uu2) +do UU' = du . 

The I-form SO takes the form 

00 = i[du U + du U' + d(uu) UU' + d(u2) U + d(uv2) UU] . 
Any function f on the set can be written as 

1 2  

f = - y c u i u j  f[j 
i=o j=o 

with constants f i j .  This leads to the expression 

(6.17) 

(6.18) 

(6.19) 

for its differential. The reduction is now performed by imposing the relations 

v d u = p d u u  u d u = d u u  udv=dvu  (6.20) 

where p is a cubic primitive root of unity. They imply 

d(uu) = du U + duu 
d ( u 2 ) = ( 1 + p ) d u ~  
d(uu2) = du U* + (1 + p )  du U U 

Using these relations in (6.19) one finds 

(6.21) 
(6.22) 
(6.23) 

(6.24) 

Furthermore, 

(6.25) 
I I 

00 = - duu-' - - du U-' 
2 P - 1  

and we obtain the 2-form relations 

dudu+dvdu=O d u d u = 0 .  (6.26) 

In the sense of our discussion in section 6.1, via (6.24) the reduced differential calculus 
gives a two-dimensional torus structure to the set of six points. 
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6.3. Further remarks about reductions 

So far we have understood a reduction of a differential calculus as a procedure to reduce 
its dimensionality (i.e. the number of linearly independent differentials). This is done by 
adding extra relations to the differential calculus. It is, however, possible to add relations 
without changing the dimension. 

In section 2 we have introduced the I-forms Oij and shown that setting one (or several) 
of these forms to zero does not lead to  any further constraint on the first-order differential 
calculus. It leads, of course, to 2-form relations dO;j = 0 and additional conditions according 
to the involution which is used. 

With a differential calculus we can associate a directed graph with N vertices. An arrow 
connects vertex i with vertex j whenever Oj j  # 0. For the universal differential calculus 
this means that each pair of vertices is connected by two lines with opposite direction. We 
can represent this graph by the ( N  x N)-matrix which has zeros on the diagonal and all 
other entries equal to 1. A 1 in the ith row and jth column stands for an mow pointing 
from vertex i to vertex j. Setting 012 = 0, for example, means that we have to delete the 
arrow from vertex 1 to vertex 2 (in the corresponding matrix, the 1 in the first row and 
second column has to be replaced by 0). Imposing also 82, = 0 separates the two vertices 
(which may, however, still be connected via other vertices). 

Example. In section 6.2 a reduction of the universal differential calculus on the six-point 
space to a two-dimensional differential calculus was considered. Using 

U = xo - XI + x2 - x3 + x4 - x5 (6.27) 
U = xo + p2x1 + px2 + x3 + p2x4  + p x5 (6.28) 

(where p is a primitive cubic root of unity), the reduction conditions (6.20) can be expressed 
in the form 0, = 0 for certain values of the indices i ,  j. These equations are summarized 
in the matrix 

A Dimakis and F Muller-Hoissen 

0 0 0 1 1 0  
0 0 0 0 1 1  

(6.29) 

The corresponding graph is shown in figure 3. That each row and each column of the 
matrix have precisely two 1s is related to the fact that the reduced differential calculus 
is two-dimensional. For the graph it means that each vertex has two incoming and two 
outgoing arrows. In general, the reduction procedure leads to graphs where the number of 
incoming and outgoing mows varies from vertex to vertex. This somehow means that the 
dimension varies over the set of points. 

0 

Figure 3. The graph associated with a two-dimensional reduction of the universal 
differentid calculus on a six-point space. 3 
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7. Conclusions 

We have formulated differential calculus and gauge theory on an arbitrary finite set. 
Endowing the latter with a group structure, one can define analogues of Maurer-Cartan 
forms (see also 191). It is then straightforward to define principal fibre bundles with 
discrete structure groups and connections on them. Other differential geometric structures 
are expected to also have a ‘discrete analogue’. 

In the special example of gauge theory on a two-point~space we recovered the geometric 
interpretation of the Higgs field as in Connes’ formulation of the standard model ([7], see 
also [23]). 

The universal differential calculus (in the sense of Connes) associates with all linearly 
independent elements of an algebra corresponding linearly independent differentials. This 
means that it assigns a geometric picture (a polyhedron) in N dimensions to a set of N 
elements. The universal differential calculus admits reductions to consistent differential 
calculi with which one can associate a similar geometric picture in lower dimensions. We 
have only given examples which certainly do not exhaust the possibilities. In particular, we 
discussed a reduction to a single dimension in section 6.1. In 1111 the resulting differential 
calculus has been shown to be equivalent to a ‘non-commutative’ differential calculus on 
an equidistant periodic lattice. 

There is one point which we would like to stress here. In an algebraic sense, one can 
easily construct reductions of the universal differential calculus. , The problem is that, in 
general, one is not able to find some geometric picture associated with such a reduction. 
Such a picture may be found by expressing the reduced calculus in suitable ‘coordinates’. 
However, we do not yet have a systematic way to find such coordinates. On the other 
hand, we have shown that associated with certain group structures there are choices of 
coordinates in terms of which reductions of the universal differential calculus lead to a 
geometric understanding of the resulting differential calculus. 

It is important, however, to keep the following in mind. When we speak about a 
‘geometric picture’ we are actually guided by continuum geometry, thinking of spheres, 
tori etc. A finite set of points can be connected in such a way that the resulting structure 
reminds us of such a continuum geometric picture. But there are other connection structures 
for which no corresponding continuum picture exists. This means that there are many more 
possibilities for discrete structures. This also concerns the dimensionality. To a set of points 
we can assign different dimensions. The fact that for a discrete set there is no rigid notion of 
dimension has some interesting aspects. If a spacetime model is set up in such a framework, 
the dimension may even change with length scale and in such a way incorporate features 
of Kaluza-Klein theories (cf [6]). 

In [11, 121 we were interested in deformations of the ordinary differential calculus on 
the algebra of functions on RN. In the case of a certain deformation (cf (6.7)) it turned 
out that the differential calculus could be restricted to functions on a lattice. In the same 
way we can understand each of the differential calculi of the present paper as a calculus 
on RM when the calculus has M independent differentials. The calculus still contains the 
information about the point set in the following way. Consider, for example, the differential 
calculus with U du = -du U where U is a real coordinate on R. Using the Leibniz rule, it 
implies d(u2) = 0 which means that U* is a constant with respect to the differential calculus 
under consideration. It follows that the ‘constants’ are precisely the even functions h of U 
(i.e. h( -U)  =~h(u)) .  Since every function f can be written in aunique way as f = ho+hlu 
with even.functions ho, h l ,  it is represented by a pair of ‘constants’ and in this sense we 
have a two-point space. 



3176 A Dimakis and F Muller-Hoissen 

As already mentioned in the introduction, there are several approaches towards physical 
theories based on discrete spaces in the literature. Non-commutative differential geometry 
of discrete spaces should have some impact on these approaches and vice versa. 
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Appendix A. A representation of the differentlal calculus on 4 

Following Comes’ treatment of the two-point space 171, we represent a function f on Z2 

by a diagonal matrix 

where 1 denotes the (m x m) unit matrix. The differential o f f  is represented by 

with a complex (m x m) matrix M. In particular, the function y introduced in section 5 is 
given by 

and we find 
0 -Mt d y = 2 i  ( ) d y 2 = 0 .  

For the 1-form 81 we obtain 

so that 

and therefore 

t r ~ e ~ ) ~  f l  = 2 t r ( ~ + ~ Y  [f(o) + f(1)1 
where tr is the ordinary matrix trace. 

(A.4) 

(-4.7) 

Appendix B. Matrix algebras as differential algebras 

Let MN denote the algebra of complex (N x N) matrices and Q the direct sum MN @ MN. 
The latter becomes an algebra with the multiplication rule (A, B)(A’,  E‘) = (AA‘, EB’) .  
There is a natural ZZ grading. We call an element of Q ‘even’ if it is of the form (A, A )  
and ‘odd‘ if it has the form (A, -A). Since ( A ,  E) = ( ( A  + B ) / 2 ,  ( A  + E ) / 2 )  + ((A - 
E ) / 2 . - ( A  - E ) / 2 ) ,  51 splits into a direct sum, Q = at @ Q-. Let A N  denote the 
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commutative subalgebra of S2+ consisting of elements of the form f = ( F ,  F )  where 
F E MN is diagonal. In terms of the matrices Eij with components (Ei j )xe  = &&je we 
have 

For i # j we introduce Oij := cij ( E i j ,  - E i j )  where cij E C. Furthermore, we define 

and d(fodfi . . . df,) := dfo dfi . . . dfr. With these definitions, S2 has the structure of a 
differential calclulus over A N .  

For xi := (Eij. Eii) we find C c  dxi = 0 and d x i  xj = O j j  for i j4 j (cf section 2). 
There are N - 1 independent differentials d x i ,  i = 1, . . . , N - 1 in this calculus. Setting 
some of the cij to zero, it is possible to reduce the number of independent differentials. In 
this way one can tum MN itself into a differential algebra. As an example, let us consider 
M3. Let d3 be ihe subalgebra of diagonal matrices and 

e:= ( x 0 C,?) 
0 CO2 

C?O CZl ~ 0 
(B.3) 

(i.e. we set col = C I O  = 0). With the above definition of d, M3 becomes a differential 
algebra Q3 over d3. In this case,  we^ have a Z? grading S23 = Q+@ S2- where n' and Q- 
consist, respectively, of the matrices of the form 

* * o  o o *  

o o *  * * o  
( *  * 0 )  and ( 0  0 * )  P.4) 

with possible non-zero entries indicated by a *. 
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